Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia.
نویسندگان
چکیده
Periventricular leukomalacia (PVL), the major substrate of cerebral palsy in survivors of prematurity, is defined as focal periventricular necrosis and diffuse gliosis in immature cerebral white matter. We propose that nitrosative and/or oxidative stress to premyelinating oligodendrocytes complicating cerebral ischemia in the sick premature infant is a key mechanism of injury interfering with maturation of these cells to myelin-producing oligodendrocytes and subsequent myelination. Using immunocytochemical markers in autopsy brain tissue from 17 PVL cases and 28 non-PVL controls, we found in the PVL cases: 1) selective regionalization of white matter injury, including preferential involvement of the deep compared to intragyral white matter; 2) prominent activation of microglia diffusely throughout the white matter; 3) protein nitration and lipid peroxidation in premyelinating oligodendrocytes in the diffuse component; 4) preferential death of premyelinating oligodendrocytes diffusely; and 5) virtual sparing of the overlying cerebral cortex, as demonstrated by markers of activated astrocytes and microglia. These data establish that PVL is primarily a white matter disease that involves injury to premyelinating oligodendrocytes, potentially through activation of microglia and release of reactive oxygen and nitrogen species. Agents that prevent nitrosative and oxidative stress may play a key role in ameliorating PVL in premature infants in the intensive care nursery.
منابع مشابه
Oxidative injury in the cerebral cortex and subplate neurons in periventricular leukomalacia.
We previously identified immunocytochemical evidence of nitrative and oxidative injury in premyelinating oligodendrocytes in periventricular leukomalacia (PVL). Here, we tested the hypothesis that free radical injury occurs in the overlying cerebral cortex and subplate neurons in PVL. We immunostained for nitrotyrosine, malondialdehyde, and hydroxynonenal adducts and scored neuron staining dens...
متن کاملGlutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate.
Periventricular leukomalacia is a form of hypoxic-ischemic cerebral white matter injury seen most commonly in premature infants and is the major antecedent of cerebral palsy. Glutamate receptor-mediated excitotoxicity is a predominant mechanism of hypoxic-ischemic injury to developing cerebral white matter. We have demonstrated previously the protective effect of AMPA-kainate-type glutamate rec...
متن کاملNEUROLOGICAL REVIEW Progress in Periventricular Leukomalacia
P eriventricular leukomalacia (PVL) is the predominant form of brain injury and the leading known cause of cerebral palsy and cognitive deficits in premature infants. The number of low-birth-weight infants who survive to demonstrate these neurologic deficts is increasing. Magnetic resonance imaging–based neuroimaging techniques provide greater diagnostic sensitivity for PVL than does head ultra...
متن کاملAnimal Models of Periventricular Leukomalacia
Periventricular leukomalacia, specifically characterized as white matter injury, in neonates is strongly associated with the damage of pre-myelinating oligodendrocytes. Clinical data suggest that hypoxia-ischemia during delivery and intrauterine or neonatal infection-inflammation are important factors in the etiology of periventricular leukomalacia including cerebral palsy, a serious case exhib...
متن کاملMaturation-dependent vulnerability of perinatal white matter in premature birth.
Survivors of premature birth have a predilection for perinatal brain injury, especially to periventricular cerebral white matter. Periventricular white matter injury (PWMI) is now the most common cause of brain injury in preterm infants and the leading cause of chronic neurological morbidity. The spectrum of chronic PWMI includes focal cystic necrotic lesions (periventricular leukomalacia) and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuropathology and experimental neurology
دوره 62 5 شماره
صفحات -
تاریخ انتشار 2003